Characterization of Metric Regularity of Subdifferentials

نویسندگان

  • Francisco J. Aragón Artacho
  • Michel H. Geoffroy
چکیده

We study regularity properties of the subdifferential of proper lower semicontinuous convex functions in Hilbert spaces. More precisely, we investigate the metric regularity and subregularity, the strong regularity and subregularity of such a subdifferential. We characterize each of these properties in terms of a growth condition involving the function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Metric Regularity for Weakly Almost Piecewise Smooth Functions and Some Applications in Nonlinear Semidefinite Programming

The one-to-one relation between the points fulfilling the KKT conditions of an optimization problem and the zeros of the corresponding Kojima function is well-known. In the present paper we study the interplay between metric regularity and strong regularity of this a priori nonsmooth function in the context of semidefinite programming. Having in mind the topological structure of the positive se...

متن کامل

Hölder Stable Minimizers, Tilt Stability, and Hölder metric Regularity of Subdifferentials

Using techniques of variational analysis and dual techniques for smooth conjugate functions, for a local minimizer of a proper lower semicontinuous function f on a Banach space, p ∈ (0, +∞) and q = 1+p p , we prove that the following two properties are always equivalent: (i) x̄ is a stable q-order minimizer of f and (ii) x̄ is a tilt-stable p-order minimizer of f . We also consider their relation...

متن کامل

Restrictive metric regularity and generalized differential calculus in Banach spaces

We consider nonlinear mappings f :X → Y between Banach spaces and study the notion of restrictive metric regularity of f around some point x̄, that is, metric regularity of f from X into themetric space E = f(X). Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves...

متن کامل

On the Cost-subdifferentials of Cost-convex Functions

We are interested in the cost-convex potentials in optimal mass transport theory, and we show by direct and geometric arguments the equivalence between cost-subdifferentials and ordinary subdifferentials of cost-convex functions, under the assumptions A0, A1, A2, and A3W on cost functions introduced by Ma, Trudinger, and Wang. The connectivity of contact sets of optimal transport maps follows a...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008